US009384570B2

a2 United States Patent 10) Patent No.: US 9,384,570 B2
Bolz 45) Date of Patent: Jul. 5, 2016
(54) EFFICIENT SETUP AND EVALUATION OF (56) References Cited
FILLED CUBIC BEZIER PATHS US. PATENT DOCUMENTS
(71) Applicant: Nvidia Corporation, Santa Clara, CA 2007/0097123 Al* 5/2007 Loopetal.cccovvvemnnnn.. 345/442
(Us) 2010/0322527 Al* 12/2010 Fabletetal. ... 382/232
2011/0285736 Al™* 112011 Kilgardccoeoevernnene 345/584
(72) Inventor: Jeffrey A Bolz, Austin, TX (US) OTHER PUBLICATIONS
. . Rueda etal., “GPU-based rendering of curved polygons using simpli-
(73) Assignee: NVIDIA CORPORATION, Santa cal coverings,” Elsevier Ltd, 2008.*
Clara, CA (US) Loop et al., “Resolution Independent Curve Rendering using Pro-
grammable Graphics Hardware,” ACM, 2005.*
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 * cited by examiner
U.S.C. 154(b) by 236 days. Primary Examiner — Kee M Tung
Assistant Examiner — Nicholas R Wilson
(21) Appl. No.: 14/028,042
(57) ABSTRACT
(22) Filed: Sep. 16, 2013 A graphics processing system includes a central processing
unit that processes a cubic Bezier curve corresponding to a
(65) Prior Publication Data filled cubic Bezier path. Additionally, the graphics processing
system includes a cubic preprocessor coupled to the central
US 2015/0077420 Al Mar. 19, 2015 processing unit that formats the cubic Bezier curve to provide
a formatted cubic Bezier curve having quadrilateral control
(51) Int.ClL points corresponding to a mathematically simple cubic curve.
GO6T 1120 (2006.01) The graphics processing system further includes a graphics
(52) U.S.CL processing unit coupled to the cubic preprocessor that
CPC oo GO6T 11/203 (2013.01) employs the formatted cubic Bezier curve in rendering the
(58) Field of Classification Search filled cubic Bezier path. A rendering unit and a display cubic
None Bezier path filling method are also provided.

See application file for complete search history.

600

16 Claims, 2 Drawing Sheets

G

610~

SUBDIVIDE A DISPLAY CUBIC BEZIER PATH
INTO A SET OF CUBIC BEZIER CURVES

v

615~

FORMAT EACH OF THE SET OF CUBIC BEZIER CURVES TO
PROVIDE A SET OF CONTROL POINTS CORRESPONDING

TO A MATHEMATICALLY SIMPLE CUBIC CURVE

v

ASSIGN TEXTURE COORDINATES TO EACH OF
THE SET OF CONTROL POINTS FOR RENDERING
EACH MATHEMATICALLY SIMPLE CUBIC CURVE

v

EVALUATE A PIXEL SAMPLE DURING RENDERING OF EACH
MATHEMATICALLY SIMPLE CUBIC CURVE FOR INCLUSION OR
EXCLUSION IN FILLING THE DISPLAY CUBIC BEZIER PATH

egoﬁ

620"

6251

U.S. Patent Jul. 5, 2016 Sheet 1 of 2 US 9,384,570 B2

100
GRAPHICS PROCESSING SYSTEM
CPU GPU
105\ 5 N 115
107 111
106 p; \ 110
cuBIC
PREPROCESSOR DISCARD SHADER
J s
SYSTEM MEMORY FRAME MEMORY

/ N
108 112 FIG. 1

®

FIG. 2 -

[4

(x2,y2)
400
406 >
e 401. 408
405 —
= .
. 413
411
e 412
«

U.S. Patent Jul. 5, 2016 Sheet 2 of 2 US 9,384,570 B2

500
505 e
\
RENDERING UNIT 530
510~ GPU
515~ FRAME | |—
MEMORY
J
FIG. 5
600
G
610~ SUBDIVIDE A DISPLAY CUBIC BEZIER PATH
INTO A SET OF CUBIC BEZIER CURVES

!

615 FORMAT EACH OF THE SET OF CUBIC BEZIER CURVES TO
™ PROVIDE A SET OF CONTROL POINTS CORRESPONDING
TO AMATHEMATICALLY SIMPLE CUBIC CURVE

!

ASSIGN TEXTURE COORDINATES TO EACH OF
620-"1 THE SET OF CONTROL POINTS FOR RENDERING
EACH MATHEMATICALLY SIMPLE CUBIC CURVE

!

EVALUATE A PIXEL SAMPLE DURING RENDERING OF EACH
625" MATHEMATICALLY SIMPLE CUBIC CURVE FOR INCLUSION OR
EXCLUSION IN FILLING THE DISPLAY CUBIC BEZIER PATH

630

FIG. 6

US 9,384,570 B2

1
EFFICIENT SETUP AND EVALUATION OF
FILLED CUBIC BEZIER PATHS

TECHNICAL FIELD

This application is directed, in general, to rendering a com-
puter display and, more specifically, to a graphics processing
system, a rendering unit and a display cubic Bezier path
filling method.

BACKGROUND

Path rendering is a style of resolution-independent two
dimensional (2D) rendering, often called “vector graphics,”
that is the basis for a number of important rendering stan-
dards. These rendering standards include PostScript, Java 2D,
Quartz 2D, OpenVG, PDF, TrueType fonts, OpenType fonts
and PostScript fonts, as well as drawings in Office file formats
including PowerPoint and Adobe [lustrator illustrations, for
example. Additionally, Internet applications include Scalable
Vector Graphics (SVGQG), Silverlight and Adobe Flash for
interactive web experiences and XML Paper Specification
(XPS).

A path may be rendered into a frame buffer by first deter-
mining the coverage of the path in a stencil buffer and subse-
quently covering the stenciled region with bounding geom-
etry that shades the covered pixels. Paths may include cubic
Bezier curve segments and determining the coverage of filled
cubic Bezier segments is a mathematically involved process.
In a current practice of setting up texture coordinates, the
cubic equation may be determined to be one of three curve
types by classifying its roots wherein coefficients are them-
selves 3x3 matrix determinants of the original cubic equation
control points. Improvements in evaluating filled cubic
Bezier segments for rendering would be beneficial to the art.

SUMMARY

Embodiments of the present disclosure provide a graphics
processing system, a rendering unit and a display cubic
Bezier path filling method.

In one embodiment, the graphics processing system
includes a central processing unit that processes a cubic
Bezier curve corresponding to a filled cubic Bezier path.
Additionally, the graphics processing system includes a cubic
preprocessor coupled to the central processing unit that for-
mats the cubic Bezier curve to provide a formatted cubic
Bezier curve having quadrilateral control points correspond-
ing to a mathematically simple cubic curve. The graphics
processing system further includes a graphics processing unit
coupled to the cubic preprocessor that employs the formatted
cubic Bezier curve in rendering the filled cubic Bezier path.

In another aspect, the rendering unit includes a graphics
processing unit configured to render a filled cubic Bezier
path. Additionally, the rendering unit includes a shader
coupled to the graphics processing unit and configured to
format a cubic Bezier curve corresponding to the filled cubic
Bezier path, wherein a formatted cubic Bezier curve provides
quadrilateral control points corresponding to a mathemati-
cally simple cubic curve.

In yet another aspect, the display cubic Bezier path filling
method includes subdividing a display cubic Bezier path into
a set of cubic Bezier curves and formatting each of the set of
cubic Bezier curves to provide a set of control points corre-
sponding to a mathematically simple cubic curve. Addition-
ally, the display cubic Bezier path filling method includes
assigning texture coordinates to each of the set of control

10

25

40

45

55

60

2

points for rendering each mathematically simple cubic curve
and evaluating a pixel sample during rendering of each math-
ematically simple cubic curve for inclusion or exclusion in
filling the display cubic Bezier path.

The foregoing has outlined preferred and alternative fea-
tures of the present disclosure so that those skilled in the art
may better understand the detailed description of the disclo-
sure that follows. Additional features of the disclosure will be
described hereinafter that form the subject of the claims of the
disclosure. Those skilled in the art will appreciate that they
canreadily use the disclosed conception and specific embodi-
ment as a basis for designing or modifying other structures for
carrying out the same purposes of the present disclosure.

BRIEF DESCRIPTION

Reference is now made to the following descriptions taken
in conjunction with the accompanying drawings, in which:

FIG. 1 illustrates a block diagram of an embodiment of a
graphics arrangement constructed according to the principles
of the present disclosure;

FIG. 2 illustrates an example of a normalized cubic curve
constructed according to the principles of the present disclo-
sure;

FIG. 3 illustrates an example of a formatted cubic Bezier
curve constructed according to the principles of the present
disclosure;

FIG. 4 illustrates an example of a pixel geometry con-
structed according to the principles of the present disclosure;

FIG. 5 illustrates an embodiment of a rendering system
constructed according to the principles of the present disclo-
sure; and

FIG. 6 illustrates an embodiment of a display cubic Bezier
path filling method carried out according to the principles of
the present disclosure.

DETAILED DESCRIPTION

A path is a two-dimensional (2D) collection of path seg-
ments, where a path segment is generally a line, a quadratic
Bezier curve, a cubic Bezier curve or a partial elliptical arc
(i.e., part of an ellipse or circle). One can basically think of a
path as starting somewhere and then progressing to a desti-
nation based on a collection of controlling commands. Some-
times the path is closed by returning to its starting point. In
rendering a filled path, pixel samples are determined to be
inside or outside of the path based on the pixel sample’s
winding number (i.e., a number of times the path wraps
around the pixel sample, incrementing and decrementing
based on whether the wrapping is clockwise or counterclock-
wise), and a fill rule (e.g. is the winding number “non-zero” or
“even or odd”). All pixel samples satisfying the winding rule
are filled or colored during the rendering process. Paths often
employ combinations of linked Bezier curves, since they are
smooth curves that can be scaled indefinitely.

Embodiments of the present disclosure ultimately focus on
improving the computational efficiency of determining the
pixel samples that are within a filled cubic Bezier curve. This
involves a set-up process (called “baking”) and a rendering
process, wherein the two processes may be split between a
central processing unit (CPU) for baking and a graphics pro-
cessing unit (GPU) for rendering. In this case, an overall
algorithm is provided for a cubic Bezier curve that is compu-
tationally efficient to both bake on the CPU and to render on
the GPU, especially for paths that are rendered only once. In
another case, a shader associated with the GPU may be
employed for baking with rendering supplied by the GPU.

US 9,384,570 B2

3

Generally, minimal subdivision is performed on a cubic
Bezier curve until it is mathematically simple. Cubic Bezier
curves are often defined parametrically. For example:

x=f,(#), and

y=H0),

where t is a common parameter that generally ranges from
zero to one.

For purposes of this disclosure, a mathematically simple
cubic curve is defined as one having only one “facingness”
(e.g., concave in only one direction) for a monotonically
increasing x(t). This simple cubic curve is defined by four
control points. These four controls points are bounded by
either a quadrilateral constructed from the four control points,
or a triangle constructed from three of the control points (if
one control point is inside the triangle formed by the other
three). In either case, texture coordinates are assigned to each
of these bounding control points, and discard shading evalu-
ates whether pixel samples lie within the cubic Bezier curve,
thereby filling it.

FIG. 1 illustrates a block diagram of an embodiment of a
graphics arrangement, generally designated 100, constructed
according to the principles of the present disclosure. In the
illustrated embodiment, the graphics arrangement 100
includes a graphics processing system 105 and a local moni-
tor 115. The graphics processing system 105 includes a cen-
tral processing unit (CPU) 106, a cubic preprocessor 107, a
system memory 108, a graphics processing unit (GPU) 110, a
discard shader 111 and a frame memory 112.

The CPU 106 is coupled to the cubic preprocessor 107 and
the system memory 108 and provides general computing
processes and general control of operations for the graphics
processing system 105. The system memory 108 includes
long term memory storage (e.g., a hard drive) for computer
applications and random access memory (RAM) to facilitate
computation by the CPU 106. The GPU 110 is coupled to the
CPU 106, the discard shader 111 and the frame memory 112.
The GPU 110 provides monitor display and frame control of
the local monitor 115.

In the illustrated embodiment, the CPU 106 is employed to
process a cubic Bezier curve corresponding to a filled cubic
Bezier path on the local monitor 115. The cubic preprocessor
107 is generally associated with the CPU 106 and formats the
cubic Bezier curve to provide a formatted cubic Bezier curve
having quadrilateral control points corresponding to a math-
ematically simple cubic curve. Providing the formatted cubic
Bezier curve may generally correspond to normalizing, trans-
lating, scaling, rotating or subdividing the cubic Bezier curve.
In one embodiment, the cubic preprocessor 107 may be a
software module and may operationally reside in the system
memory 108, the frame memory 110 or in portions of both.
Alternately, the cubic preprocessor 107 may be implemented
in hardware or a combination of software and hardware.

Initially, the CPU 106 reorients and scales the cubic Bezier
curve (i.e., translates it) so that a first control point is located
at the origin (0,0). It is rotated and scaled such that a last
control point is at (1,0). The two intermediate control points,
after this process, are referred to as (x1,y1) and (x2,y2), such
that only four real variables are defining the shape of the
formatted cubic Bezier curve.

Generally, a formatted cubic Bezier curve cannot intersect
the line between the first and last control points. This condi-
tion may be rectified by subdividing where it crosses the line
between the first and last control points. A formatted cubic
Bezier curve cannot have a loop, which would occur if
abscissa values (x-values) are not monotonically increasing.

25

30

40

45

50

4

Loops generate both positive and negative regions during a
filling operation and are computationally complicated. So, to
avoid loops, the cubic Bezier curve is subdivided. Addition-
ally, x1 and x2 are required to be in the range of zero to one,
which can also be accomplished by subdivision. In practice,
the average number of subdivision operations required per
path segment is much less than one for most content.

The formatted cubic Bezier curve is provided to the GPU
110 from the cubic preprocessor 107 for further processing in
rendering the filled cubic Bezier path. Here, the discard
shader 111 is employed in evaluating a pixel sample to deter-
mine if the pixel sample is included or excluded in the filled
cubic Bezier path.

During rendering, an anti-aliasing algorithm provides
multi-sampling within each pixel. For each pixel, samples are
provided having assigned color values thereby providing the
possibility of samples having different color values within
each pixel. Then, at the end of a frame construction, all pixel
samples within the pixel are blended together. For example, if
a pixel is partially covered, it may have 50 percent from one
color and 50 percent from another color, which makes the
edge between the two blend more smoothly.

A pseudocode example for a baking process corresponding
to the principles of the present disclosure is presented below
in Tables 1A, 1B, 1C and 1D. The first four lines (Table 1A)
are translating the cubic Bezier curve so that the first control
point s at (0,0). There are a few lines in the middle (Table 1B)
where dividing by the length of control point three is accom-
plished, which basically makes control point three a distance
of one away from the origin where the first control point is
located. Then, a 2x2 matrix is formed (Table 1C), which
rotates the points so that control point three is on the X-axis
and at (1,0). Finally, a 2x2 matrix multiply is accomplished
(Table 1D).

TABLE 1A
Pseudocode Example for CPU Baking

op[0] = points[0] — points[0];
op[1] = points[1] - points[0];
op[2] = points[2] - points[0];
op[3] = points[3] - points[0];
if (length(op[3]) == 0) {// loop
splitCubicPathSegment(points, 0.5);
return;
¥

TABLE 1B

Pseudocode Example for CPU Baking

op[1] /= length(op[3])
op[2] /=length(op[3]);
op[3] /=length(op[3]);

TABLE 1C

Pseudocode Example for CPU Baking

// rotation is cheap - op3 gives us the matrix!

float cosangle = op[3].x;

float sinangle = —op[3].y;

float2x2 u = float2x2(cosangle, —sinangle,
sinangle, cosangle);

US 9,384,570 B2

5
TABLE 1D

Pseudocode Example for CPU Baking

op[1] = mul(u,op[1]);
op[2] = mul(u,op[2]);
op([3] = mul(u,op[3]);
// apply splitting tests based on op[1].xy and op[2].xy

FIG. 2 illustrates an example of a normalized cubic curve,
generally designated 200, constructed according to the prin-
ciples of the present disclosure. The normalized cubic curve
200 is representative of an arbitrary cubic curve having con-
trol points (p0, pl, p2, p3), where p0 and p3 are end control
points (anchors) and p1 and p2 are intermediate control points
(handles).

The normalized cubic curve 200 is formed in an X-Y planar
coordinate system by translating the arbitrary cubic curve
such that the control point p0 is located at a position (0,0) on
an X-axis, as shown. Then, the arbitrary cubic curve is scaled
and rotated such that the control point p3 is located at a
position (1,0) along the X-axis. In the example illustrated, this
places the intermediate control points pl and p2 at corre-
sponding positions (x1,y1) and (x2,y2), which results in the
normalized cubic curve 200 being serpentine-shaped and
therefore, not a mathematically simple cubic curve. However,
subdivision of the normalized cubic curve 200 at the point
(A,0) provides first and second cubic curve portions 205, 206
that are mathematically simple.

Generally, if the product of y1 and y2 is negative (i.e.,
y1*y2<0), then the curve is subdivided at a point y1/(y1-y2),
where f,(t) intersects 0. If the curve is a loop (i.e., x2<x1), the
loop is subdivided at t=0.5. Additionally, the curve may be
recursively subdivided into simple curves, if needed. These
may be further formatted to provide formatted cubic Bezier
curves that are mathematically simple.

FIG. 3 illustrates an example of a formatted cubic Bezier
curve, generally designated 300, constructed according to the
principles of the present disclosure. The mathematically
simple, formatted cubic Bezier curve 300 does not cross the
line (0,0)-(1,0) (i.e., y1 and y2 have the same sign). The
control points (0,0), (x1,y1), (x2,y2), (1,0) provide a quadri-
lateral bounding shape 305 that completely bounds the for-
matted cubic Bezier curve 300 and defines its mathematically
simple shape. Here, x1 is greater than zero and x2 is less than
one. Therefore, the formatted cubic Bezier curve 300 is a
simple, well-behaved curve having only one facingness that is
defined by the quadrilateral bounding shape 305.

The quadrilateral bounding shape 305 also defines an
object space, and when it is displayed on a screen (e.g., the
display monitor 115), the resulting curve may be smaller than
apixel, oritcan fill alarge portion of the whole screen thereby
engaging a large number of pixels. For either case, math-
ematical approximations may be employed, which allow cal-
culations for pixel sample testing to be simplified for
enhanced computational efficiency.

Texture coordinates are assigned to the control points (0,0),
(x1,y1), x2,y2), (1,0), and the texture coordinates are ren-
dered and interpolated by a GPU (e.g., the GPU 110). Recall
that Bezier curves are typically defined mathematically as
two parametric equations x(t) and y(t), where t ranges from
zero to one. The actual parametric equations are determined
by the control points (texture coordinates). An interpolated
pixel sample (Xs,Ys) exists, which corresponds to a value of
t (i.e., t(Xs)) that can be calculated. This may be accom-
plished by inverting the function x(t) and basically solving for

15

20

25

30

45

6
t when x(t)=Xs. That is, compute t=x"'(Xs). This may be
accomplished approximately by employing a Bisection or
Newton’s method.

Once this value of t is determined, the value of y(t) can be
computed along the curve recalling that x(t) and y(t) are cubic
functions. This gives an approximation of the Y-coordinate
(Y prow) corresponding to the t-coordinate and the X-coor-
dinate for this interpolated sample. Now, this pixel sample’s
Y-value Y(s) and the curve’s Y-valueY,, .. are known, and
the two can be compared to determine if this sample is above
or below the formatted cubic Bezier curve.

FIG. 4 illustrates an example of a pixel geometry, generally
designated 400, constructed according to the principles of the
present disclosure. The pixel geometry 400 includes a collec-
tion of pixel samples within a pixel wherein pixel samples
405, 406, 407, 408 fall outside a cubic Bezier curve 415, and
pixel samples 410, 411, 412, 413 fall inside the cubic Bezier
curve 415.

The cubic Bezier curve 415 is representative of a formatted
cubic Bezier curve that may be approximated as a straight line
within a pixel when the curve, after being projected to the
screen, is large compared to the pixel. This allows a solution
for a formatted cubic Bezier curve to be amortized across all
samples within the pixel. Ifthe curve is not large compared to
the pixel, then the above algorithm may be applied to each
sample in the pixel. Here, the solution is applied for one
sample, and then derivatives are analytically evaluated to
approximate corresponding parametric functions at other
sample points using linear extrapolation. This approach pro-
vides an optimization for the approach discussed with respect
to FIG. 3.

Initially, the solution discussed with respect to FIG. 3 is
employed to obtain a value of t corresponding to one of the
samples within the pixel. Then, a linear approximation of the
curve obtained in that neighborhood is employed to deter-
mine if the rest of the samples are above or below it. Cubic
polynomials define the curve and determining the slope of the
curve is mathematically simple, since it is obtained using the
first derivative (dy/dx) evaluated at the sample selected. The
Bernstein basis is a standard form of the polynomials defining
the parametric equations for Bezier curves. This provides the
slope of the linear approximation of the curve in the neigh-
borhood of the pixel. Then, for the remaining samples in the
pixel, it is determined if they are above or below the line
defining the cubic curve. This entails taking the slope (dy/dx)
*(x-x0)+y0, which is very fast to evaluate.

If the curve is much larger than one pixel, this approxima-
tion works well. A fragment shader employed with a GPU is
able to detect the size of the curve relative to the size of the
pixel using instructions denoted as DDX/DDY. For neighbor-
ing pixels and specifically for this case, corresponding texture
coordinates are subtracted in adjacent pixels to give an
approximation of the derivative of the texture coordinate.
This provides a sense of scale for how large the original
geometry was when compared to the pixel size. The terms
DDX and DDY are representative of differences and DDX/
DDY represents a first difference that subtracts correspond-
ing values in adjacent pixels to approximate derivatives.

FIG. 5 illustrates an embodiment of a rendering system,
generally designated 500, constructed according to the prin-
ciples of the present disclosure. The rendering system 500
includes a rendering unit 505 and a display monitor 530. The
rendering unit 505 includes a GPU 510, a shader 520 and a
frame memory 515.

The process of assigning texture coordinates based on nor-
malized coordinates can be performed either on a CPU or in
avertex shader (e.g., the shader 520) associated with the GPU

US 9,384,570 B2

7

510. In this latter case, a CPU (not shown) is only required to
determine whether curve subdividing is necessary and then
provide corresponding control points to a vertex buffer. In an
alternate embodiment, the subdividing may be accomplished
in the vertex shader, a tessellation shader or geometry shader
associated with the GPU 510.

The required texture coordinates are basically the object
space control point positions for a required curve, which are
computationally efficient to generate, as shown before. The
first and last texture coordinates are always (0,0) and (1,0) and
the two intermediate texture coordinates are formed by trans-
lating and rotating the cubic Bezier curve, which are very
efficient operations computationally.

In a further optimization, the vertex shader can actually
derive the texture coordinates from the control point locations
thereby performing the same calculation as a CPU does in
another embodiment. The vertex shader scales, translates and
rotates the curve employing the GPU 510 instead of on a
CPU. A benefit of this approach is not having to store the
texture coordinates. The control point positions are stored,
and the vertex shader then determines the texture coordinates
from these control point positions.

FIG. 6 illustrates an embodiment of a display cubic Bezier
path filling method, generally designated 600, carried out
according to the principles of the present disclosure. The
method 600 starts in a step 605, and in a step 610, a display
cubic Bezier path is optionally subdivided into a set of cubic
Bezier curves. Then, each of the set of cubic Bezier curves is
formatted to provide a set of control points corresponding to
a mathematically simple cubic curve, in a step 615. Texture
coordinates are assigned to each of the set of control points for
rendering each mathematically simple cubic curve, in a step
620. And, a pixel sample is evaluated during rendering of each
mathematically simple cubic curve for inclusion or exclusion
in filling the display cubic Bezier path, in a step 625.

In one embodiment, formatting each of the set of cubic
Bezier curves includes normalizing, translating, scaling or
rotating each of the set of cubic Bezier curves. In another
embodiment, assigning texture coordinates to each of the set
of control points includes using the set of control points as
texture coordinates. In yet another embodiment, evaluating
the pixel samples includes discard shading of the pixel sample
that involves solving a cubic equation describing the math-
ematically simple cubic curve to determine inclusion or
exclusion of the pixel sample within the display cubic Bezier
path. Correspondingly, solving the cubic equation may
include an approximate or iterative solution. Additionally, the
approximate or iterative solution may include computing an
ordinate value of the mathematically simple cubic curve that
is compared to an interpolated ordinate value of the pixel
sample. The approximate or iterative solution may include a
local linear approximation of the mathematically simple
cubic curve that intersects at least two pixels. The method 600
ends in a step 630.

While the method disclosed herein has been described and
shown with reference to particular steps performed in a par-
ticular order, it will be understood that these steps may be
combined, subdivided, or reordered to form an equivalent
method without departing from the teachings of the present
disclosure. Accordingly, unless specifically indicated herein,
the order or the grouping of the steps is not a limitation of the
present disclosure.

Those skilled in the art to which this application relates will
appreciate that other and further additions, deletions, substi-
tutions and modifications may be made to the described
embodiments.

10

20

25

30

35

40

45

50

60

65

8

What is claimed is:
1. A display cubic Bezier path filling method, comprising:
subdividing a display cubic Bezier path into a set of cubic
Bezier curves;

formatting each of the set of cubic Bezier curves to provide
asetof control points corresponding to a mathematically
simple cubic curve, wherein the display cubic Bezier
path is subdivided until the set of control points for each
of the set of cubic Bezier curves have monotonically
increasing coordinates with respect to a line joining first
and last control points, wherein each of the set of cubic
Bezier curves is translated so that the first control point
is located at an origin (0,0) and is rotated and scaled such
that the last control point is at (1,0);

assigning texture coordinates to each of the set of control
points for rendering each mathematically simple cubic
curve; and

evaluating a pixel sample during rendering of each math-

ematically simple cubic curve for inclusion or exclusion
in filling the display cubic Bezier path.
2. The method as recited in claim 1 wherein assigning
texture coordinates to each of the set of control points
includes using the set of control points as texture coordinates.
3. The method as recited in claim 1 wherein evaluating the
pixel sample includes discard shading of the pixel sample that
involves solving a cubic equation describing the mathemati-
cally simple cubic curve to determine inclusion or exclusion
of the pixel sample.
4. The method as recited in claim 3 wherein solving the
cubic equation includes an approximate or iterative solution.
5. The method as recited in claim 4 wherein the approxi-
mate or iterative solution includes computing an ordinate
value of the mathematically simple cubic curve that is com-
pared to an interpolated ordinate value of the pixel sample.
6. The method as recited in claim 4 wherein the approxi-
mate or iterative solution includes a local linear approxima-
tion of the mathematically simple cubic curve that intersects
at least two pixels.
7. A graphics processing system, comprising: a central
processing unit that processes a cubic Bezier curve corre-
sponding to a filled cubic Bezier path; and
a cubic preprocessor coupled to the central processing unit
that formats the cubic Bezier curve to provide a format-
ted cubic Bezier curve having quadrilateral control
points corresponding to a mathematically simple cubic
curve, wherein the cubic Bezier curve is subdivided until
the quadrilateral control points of the formatted cubic
Bezier curve have monotonically increasing coordinates
with respect to a line joining first and last control points,
wherein the formatted cubic Bezier curve is translated so
that the first control point is located at an origin (0,0) and
is rotated and scaled such that the last control point is at
(1,0); and

a graphics processing unit coupled to the cubic preproces-
sor that employs the formatted cubic Bezier curve in
rendering the filled cubic Bezier path.

8. The system as recited in claim 7 wherein the quadrilat-
eral control points of the formatted cubic Bezier curve are
employed as texture coordinates in rendering the filled cubic
Bezier path.

9. The system as recited in claim 8 wherein a discard shader
solves a cubic equation describing the mathematically simple
cubic curve to determine if a pixel sample lies within or
outside of the formatted cubic Bezier curve.

10. The system as recited in claim 9 wherein solving the
cubic equation includes providing an approximate or iterative
solution that computes an ordinate value of the mathemati-

US 9,384,570 B2

9

cally simple cubic curve and compares it to an interpolated
ordinate value of a pixel sample.

11. The system as recited in claim 9 wherein solving the
cubic equation includes providing a local linear approxima-
tion of the mathematically simple cubic curve that intersects
at least two pixels.

12. A rendering unit, comprising:

a graphics processing unit configured to render a filled

cubic Bezier path; and

a shader coupled to the graphics processing unit and con-

figured to format a cubic Bezier curve corresponding to
the filled cubic Bezier path, wherein a formatted cubic
Bezier curve provides quadrilateral control points cor-
responding to a mathematically simple cubic curve,
wherein the cubic Bezier curve is subdivided until the
quadrilateral control points of the formatted cubic
Bezier curve have monotonically increasing coordinates
with respect to a line joining first and last control points,
wherein the formatted cubic Bezier curve is translated so
that the first control point is located at an origin (0,0) and

5

10

15

10

rotated and scaled such that the last control point is at
(1,0), and wherein the rendering unit employs the for-
matted cubic Bezier curve in rendering the filled cubic
Bezier path.

13. The rendering unit as recited in claim 12 wherein the
shader is a vertex shader, a tessellation shader, or a geometry
shader.

14. The rendering unit as recited in claim 12 wherein the
quadrilateral control points of the formatted cubic Bezier
curve are employed as texture coordinates in rendering the
filled cubic Bezier path.

15. The rendering unit as recited in claim 14 wherein an
approximate or iterative solution describing the mathemati-
cally simple cubic curve determines if a pixel sample lies
within or outside of the filled cubic Bezier path.

16. The rendering unit as recited in claim 14 wherein an
approximate or iterative solution describing the mathemati-
cally simple cubic curve determines a local linear approxi-
mation that intersects at least two pixels.

#* #* #* #* #*

